50 oder 500?

Prinzipien der Sample Size Berechnung erklärt

^b UNIVERSITÄT BERN

 \boldsymbol{u}^{\prime}

Sven Trelle, CTU Bern

Credits to Irina Irincheeva (CTU Bern), Stephen Senn and other references

KEK Bern feedback Or any other ethics committee B. Primärer Endpunkt: Der gewählte ,primary outcome', ,safety', (Protokoll 11.1) ist mit max 25 Patienten per Definition nicht mit genügend engem Vertrauensintervall erfassbar. (Dose-limiting toxicity wäre z.B. eine erfassbare Alternative).

Eine Begründung f ür die Patientenzahl muss vorliegen.

 Seite 21, Kapitel 8.5:es fehlt die Fallzahlberechnung aufgrund des als relevant zu betrachtenden Unterschieds beim Primärparameter zwischen den beiden Behandlungsgruppen, womit die Anzahl Patienten begründet wird.

Framework of this lecture Frequentist

^b UNIVERSITÄT BERN

Null hypothesis significance testing
 → CTU Lecture 06/2018

UNIVERSITÄT BERN

The p-value – what it is (not)!

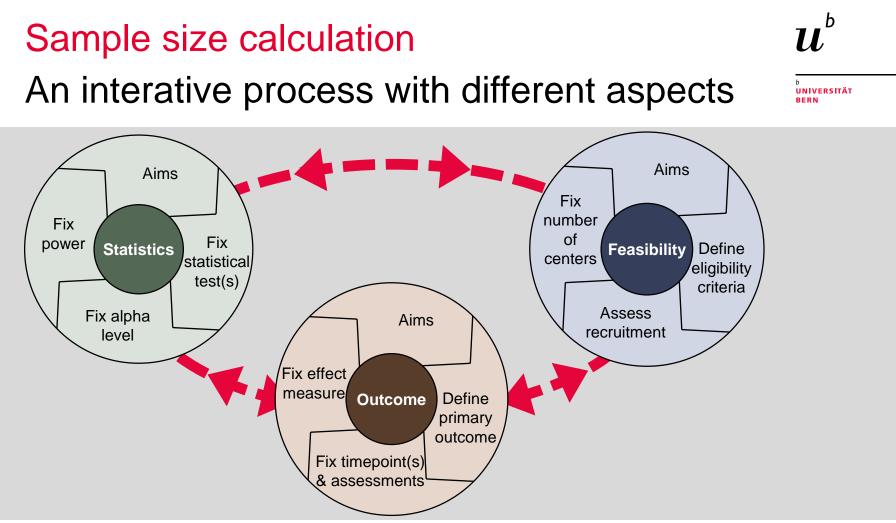
Sven Trelle CTU Bern

Framework of this lecture Frequentist

- Null hypothesis significance testing
 → CTU Lecture 06/2018
- Parameter of interest e.g. treatment effect is unknown but fixed (no uncertainty)
- A parameter estimate e.g. treatment effect estimate from a clinical trial has a distribution (uncertainty)
 - The given experiment is one realization of an infinite number (repetition) of the same experiment

 $u^{\scriptscriptstyle b}$

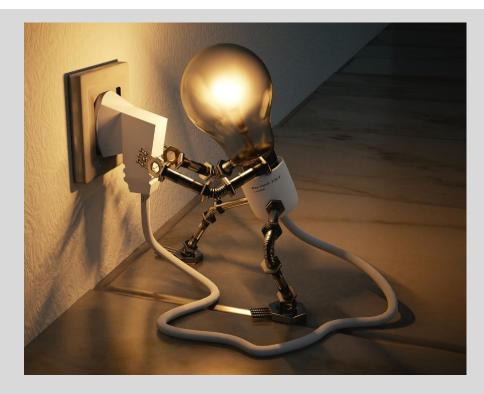
Null hypothesis testing


b

Ú

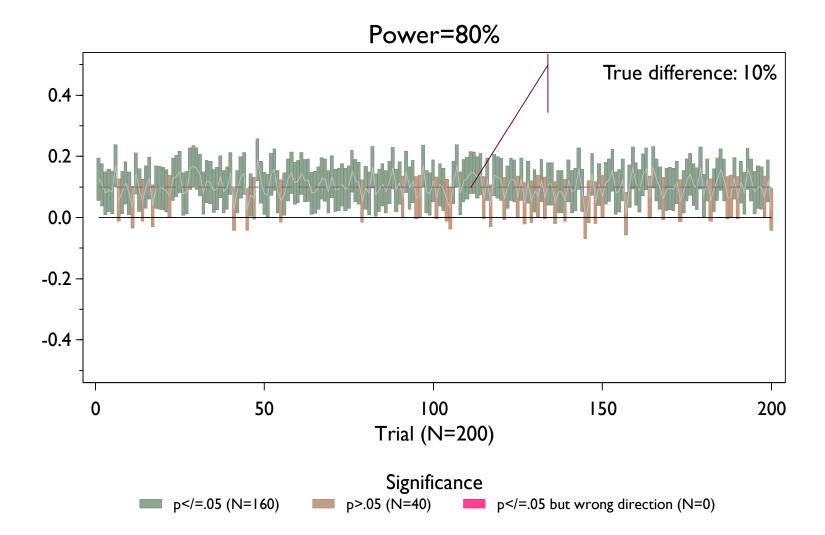
		"Truth (known)"	
		Null hypothesis is true	Alternative hypothesis is true
Test outcome	Reject the null $(p < \alpha)$	Type I error, false positive	Correct conclusion = Power
	Do not reject the null (p >/= α)	Correct conclusion	Type II error, false negative

Sample size calculation of a controlled trial In a perfect world


- 1. Have unlimited resources and no feasibility restrictions
- 2. Agree on study design
- 3. Clearly define outcome measure
- 4. Pre-specify effect measure/statistical analysis approach (test)
- 5. Fix type I error (alpha) at 0.05 (or even 0.005)
- 6. Set power to 80% (or even 90%)
- 7. Know the between-participant variance (standard deviation) or (control group) event rate
- 8. Determine difference that you do not want to miss (systematically)
- 9. If there are uncertainties, coursed
- \rightarrow Sample size

What does power mean?

- Given that alternative hypothesis is true e.g. no difference
- Probability of rejecting null hypothesis
- Repetition

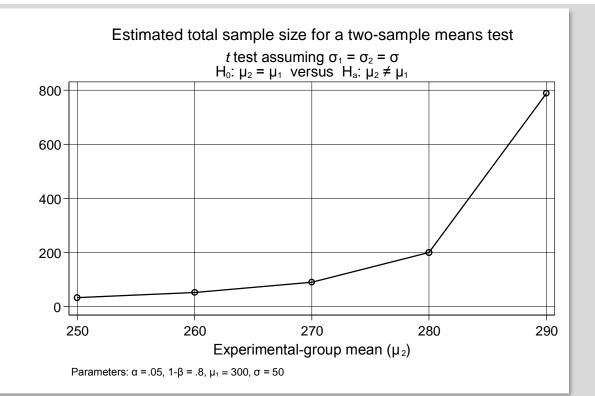


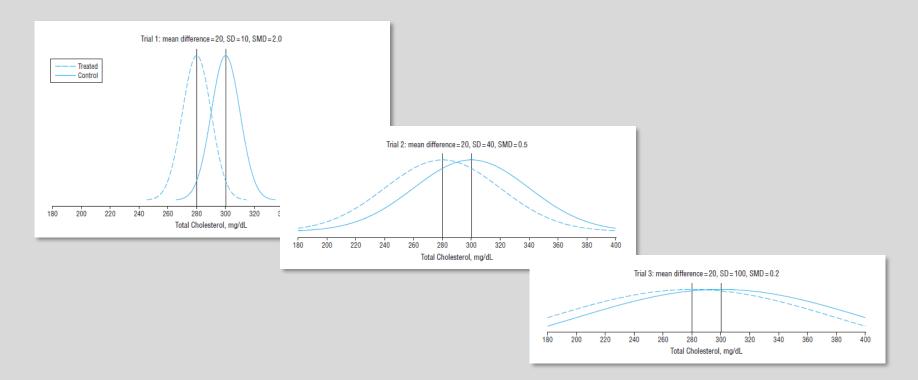
Example using repetition Simulation

- Power: 80%; placebo response rate: 40%; effect: 10% improvement

Sample size calculation of a controlled trial In a perfect world

- 1. Have unlimited resources and no feasibility restrictions
- 2. Agree on study design
- 3. Clearly define outcome measure
- 4. Pre-specify effect measure/statistical analysis approach (test)
- 5. Fix type I error (alpha) at 0.05 (or even 0.005)
- 6. Set power to 80% (or even 90%)
- 7. Know the between-participant variance (standard sev
 - (control group) event rate
- 8. Determine difference that you do not want to miss (systematically)
- 9. If there are uncertainties of
- → Sample size


Continuous outcomes


U

Influence of difference Continuous outcomes (variance/SD fixed)

Influence of between-participant variance Continuous outcomes (difference fixed)

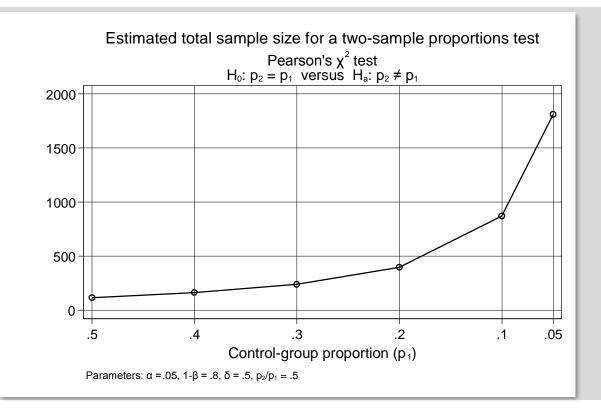
Influence of between-participant variance Continuous outcomes (difference fixed)

Estimated total sample size for a two-sample means test *t* test assuming $\sigma_1 = \sigma_2 = \sigma$ H_0 : $\mu_2 = \mu_1$ versus H_a : $\mu_2 \neq \mu_1$ 800 600 400 200 0-20 40 60 80 100 10 Common standard deviation (σ) Parameters: $\alpha = .05$, $1-\beta = .8$, $\delta = -20$, $\mu_1 = 300$, $\mu_2 = 280$

Difference & variance Continuous outcomes

```
<sup>b</sup>
UNIVERSITÄT
BERN
```


Binary outcomes

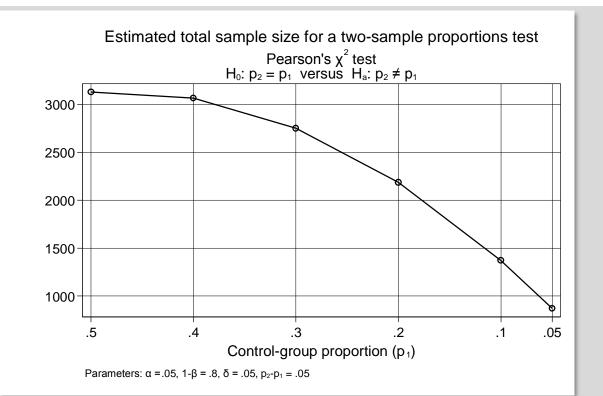


Influence of effect (relative) Binary outcome ((control) event rate fixed)

Estimated total sample size for a two-sample proportions test Pearson's χ^2 test $H_0: p_2 = p_1$ versus $H_a: p_2 \neq p_1$ 8000 6000 4000 2000 0 .6 .8 9 .5 Relative risk (p_2/p_1) Parameters: $\alpha = .05, 1-\beta = .8, p_1 = .3$

Influence of event rate (relative) Binary outcome (Relative Risk fixed)

^b UNIVERSITÄT BERN


Sample size calculation of a controlled trial In a perfect world

- 1. Have unlimited resources and no feasibility restrictions
- 2. Agree on study design
- 3. Clearly define outcome measure
- 4. Pre-specify effect measure/statistical analysis approach (
- 5. Fix type I error (alpha) at 0.05 (or even 0.005)
- 6. Set power to 80% (or even 90%)
- 7. Know the between-participant variance (standard deviation) or (control group) event rate
- 8. Determine difference that you do not want to miss (systematically)
- 9. If there are uncertainties, counsid
- \rightarrow Sample size

Influence of effect measure (absolute) Binary outcome ((control) event rate fixed)

Estimated total sample size for a two-sample proportions test Pearson's χ^2 test H₀: p₂ = p₁ versus H_a: p₂ \neq p₁ 8000 6000 4000 2000 0 .2 .12 .06 .03 Difference (p_2-p_1) Parameters: $\alpha = .05, 1-\beta = .8, p_1 = .3$

Influence of effect measure (absolute) Binary outcome (Difference fixed)

Sample size calculation of a controlled trial In a perfect world

- 1. Have unlimited resources and no feasibility restrictions
- 2. Agree on study design
- 3. Clearly define outcome measure
- 4. Pre-specify effect measure/statistical analysis approach (test)
- 5. Fix type I error (alpha) at 0.05 (or even 0.005)
- 6. Set power to 80% (or even 90%)
- 7. Know the between-participant variance (standard deviation) or (control group) event rate
- 8. Determine difference that you do not want to miss (systematically)
- 9. If there are uncertainties
- \rightarrow Sample size

What is this difference? Delta (δ)

U

"Minimally clinically relevant difference"

- "Minimally clinically relevant difference" taken literally
 → Requires test against δ not 0 (1) i.e. lower confidence interval > δ
- The believed true difference

Interpreting δ

- → Historical information biased towards larger effects (Gelman & Carlin 2014)
- → Given limited resources, money will need to be spent on interventions with smaller effects (Senn 2014)
- The difference we would like to observe
 → Will result in actual power of ca. 50% not 80%
- The difference we would not want to miss

Interpreting δ "Minimally clinically relevant difference"

UNIVERSITÄT BERN

– "Minimally clinically relevant difference" taken literally
 → Requires test against δ not 0 (1) i.e. lower confidence interval > δ

\rightarrow Important to be clear about null and alternative hypothesis

Post-hoc power "Observed power"

- Power is a pre-study concept, there is no "observed power"
- Almost always shows a low power (< 50%) for non-significant differences
- Non-significant differences plus high power does not necessarily imply support for the null over (relevant) alternative hypotheses (Greenland 2012)
- Gives overconfidence with respect to significant differences

Other considerations

^b UNIVERSITÄT BERN

- Time-to-event outcomes \rightarrow use binary as a start
 - Consider varying length of follow-up, drop-outs, ...
- More complex analysis (slide 5 #4) \rightarrow use simulations
- 'Non-standard' designs
 - − Adaptive designs, interim analysis \rightarrow adjust alpha (α); often size \uparrow
 - Cluster trials \rightarrow adjust for correlation within clusters (ICC), size \uparrow
 - Dose-finding trials \rightarrow Modelling, often size not absolutely fixed
 - Historically controlled \rightarrow multi-stage e.g. Simon's two stage design
- Observational studies \rightarrow power considerations?

- Aim at precision of confidence interval (and do not test hypotheses)
- Bayesian statistics

Thank you for your attention!

Sven Trelle, CTU Bern

References

- Gelman A, Carlin JB 2014. Perspectives on Psychological Science; 9: 641-51.
- Goodman SN, Berlin JA 1994. Ann Intern Med; 121: 200-6.
- Greenland 2012. Ann Epidemiol; 22: 364-8.
- Senn S 2014. https://errorstatistics.com/2014/03/17/stephensenn-on-how-to-interpret-discrepanciesagainst-which-a-test-has-high-power-guestpost/

Pictures from

• Pixabay

CAS Clinical Research https://www.cas-clinicalresearch.ch/

CAS Clinical Research in Health Care Organisations of the University of Bern

UNIVERSITÄT BERN

UNIVERSITÄT BERN

Clinical research is a branch of healthcare science that determines the safety and effect of medications, medical devices, diagnostic tests or procedures, and treatment regimens used in humans and patients.

Next CTU Lecture

http://www.ctu.unibe.ch/training_courses/ctu_lectures/index_eng.html

Do 14. März 2019
ZMK
André Schröder
Auditorium

