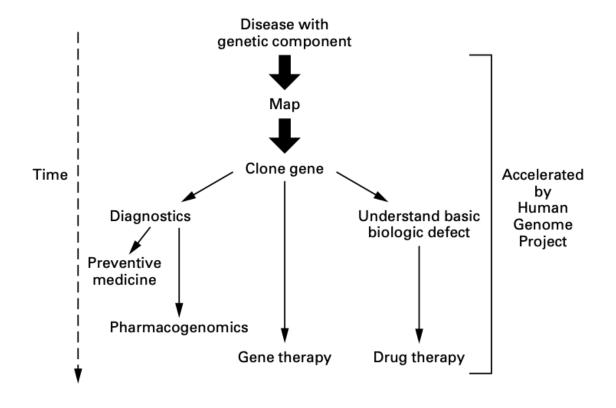


Genetics for Precision Drug Development

DCR-CTU Lecture Series October 25th, 2023 - Zoom

Vincent Mooser MD

Canada Excellence Research Chair (CERC) in Genomic Medicine Department of Human Genetics, McGill Faculty of Medicine and Health Sciences, Montreal QC, Canada


Adjunct Professor – DCR

Vincent.mooser@mcgill.ca

Expectations from the Human Genome Project

SHATTUCK LECTURE — MEDICAL AND SOCIETAL CONSEQUENCES OF THE HUMAN GENOME PROJECT

FRANCIS S. COLLINS, M.D., Ph.D.

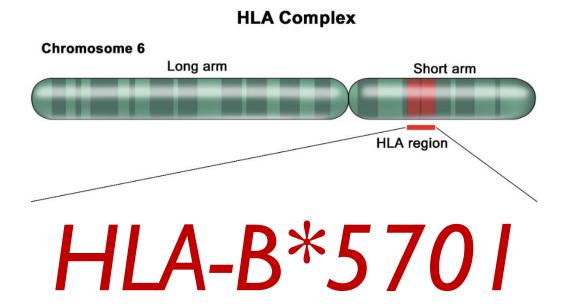
Part 1: Pharmacogenetics (PGx)

An Emblematic Success Story in PGx

Approved by FDA in 1998

Abacavir Adverse Drug Reaction

3-5%


Hypersensitivity reaction

WARNING: HYPERSENSITIVITY REACTIONS/LACTIC ACIDOSIS AND SEVERE HEPATOMEGALY

See full prescribing information for complete boxed warning.

Abacavir - Discovery of Genetic Association

Mallal et al. 2002. The Lancet 359 (9308): 727-32.

Hetherington et al. 2002. The Lancet 359 (9312): 1121–22.

Abacavir – Prospective Validation

ORIGINAL ARTICLE

HLA-B*5701 Screening for Hypersensitivity to Abacavir

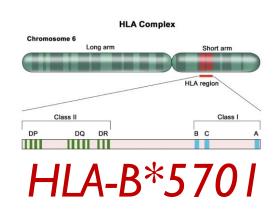
Negative Predictive Value 100%

Number Needed to Genotype 25

Discovery and Development of PGx Marker

Drug serious adverse event or efficacy

Assay development


Biomarker discovery

Retrospective validation

Prospective validation

Marketed PGx test

ORIGINAL ARTICLE

HLA-B*5701 Screening for Hypersensitivity to Abacavir

1996 - 1998

2008

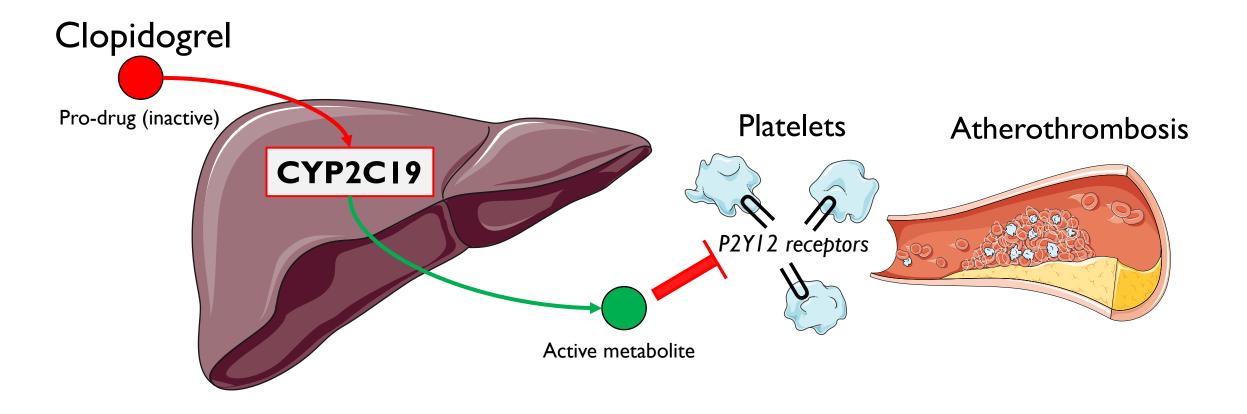
Top 10 Prescribed Drugs in the USA

	Rank	Drug Name	Total Patients (2020)
	1	<u>Atorvastatin</u>	26,640,141
	2	Levothyroxine	20,225,373
	3	<u>Metformin</u>	20,122,987
	4	Lisinopril	19,816,361
	5	<u>Amlodipine</u>	16,799,810
	6	Metoprolol	15,007,908
	7	Albuterol	17,902,020
	8	<u>Omeprazole</u>	13,879,629
	9	Losartan	12,690,563
	10	Gabapentin	10,571,700

PGx Databases

Drug label annotation

Prescribing information



Clopidogrel

Clopidogrel: A Pro-Drug Activated by CYP2C19

GWAS Studies on Response to CV Drugs

32% of the 221 marketed CV drugs were studied

50% of GWAS reported significant associations

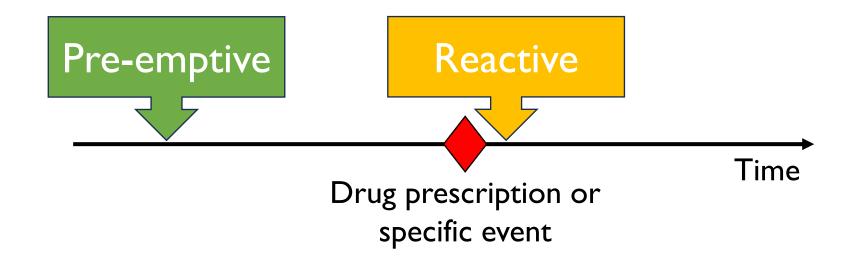
of mapped genes have a corresponding drug-gene PGx recommendation

Challenges in Implementing PGx in the Clinic

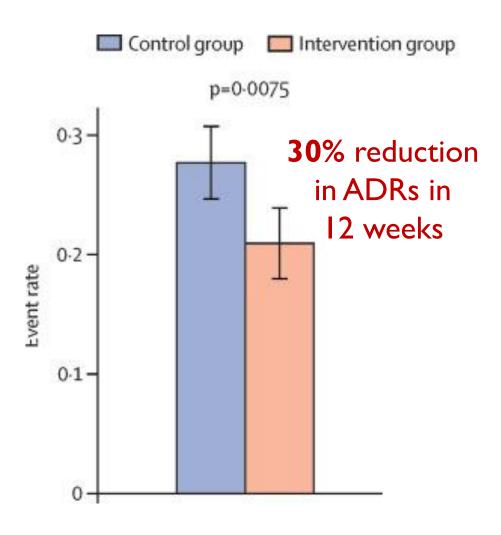
- Demonstration of clinical validity and clinical utility
- Reimbursement
- Complexity in the interpretation of PGx results
- ELSI of PGx
- Turnaround time and return of PGx results

Opportunities for Implementing PGx in the Clinic

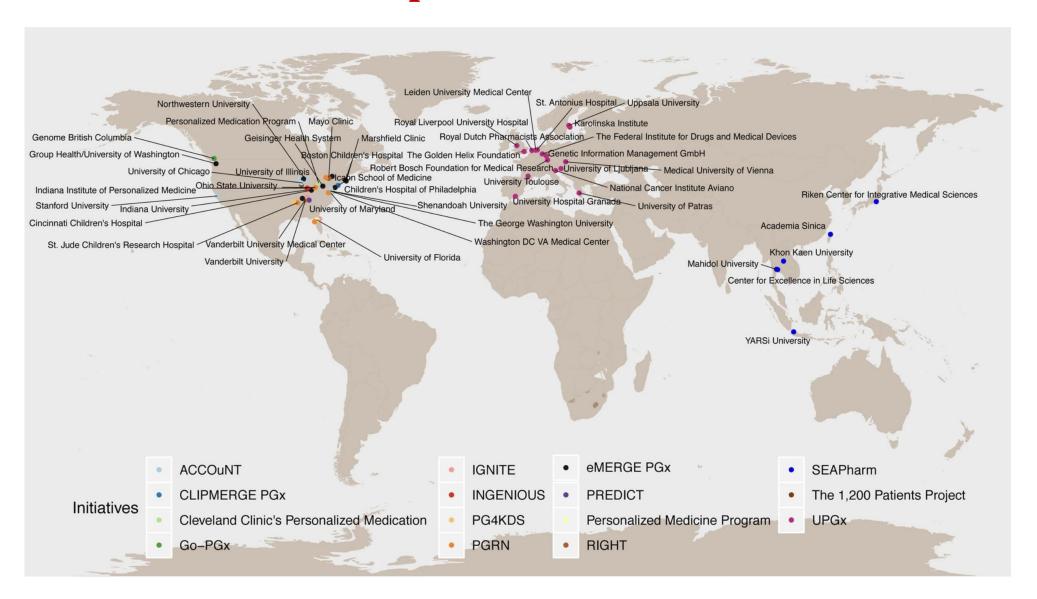
• ≥ 95% of us carry actionable PGx variants



• IT breakthroughs



• Decreasing costs of sequencing


Pre-Emptive vs Reactive PGx

Pre-Emptive PGx Reduces Adverse Drug Reactions

Pre-Emptive PGx Initiatives

Part 2: New Therapeutics

DDD: A Series of Well-Defined Steps

Drug Discovery

Drug Development

I V PCSK9

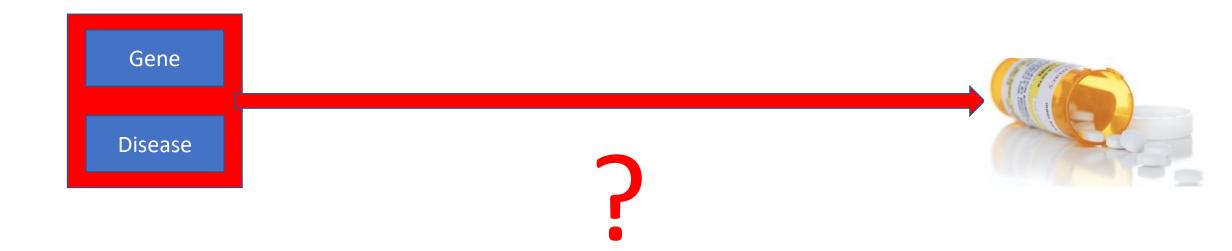
"The PCSK9
story is
a terrific
example of
an up-andcoming
pattern of
translational
research."

PCSK9: An Emblematic Example

Single-minded: Helen Hobbs and Jonathan Cohen's approach to heart-disease genetics yielded a target for drugs that could compete with statins.

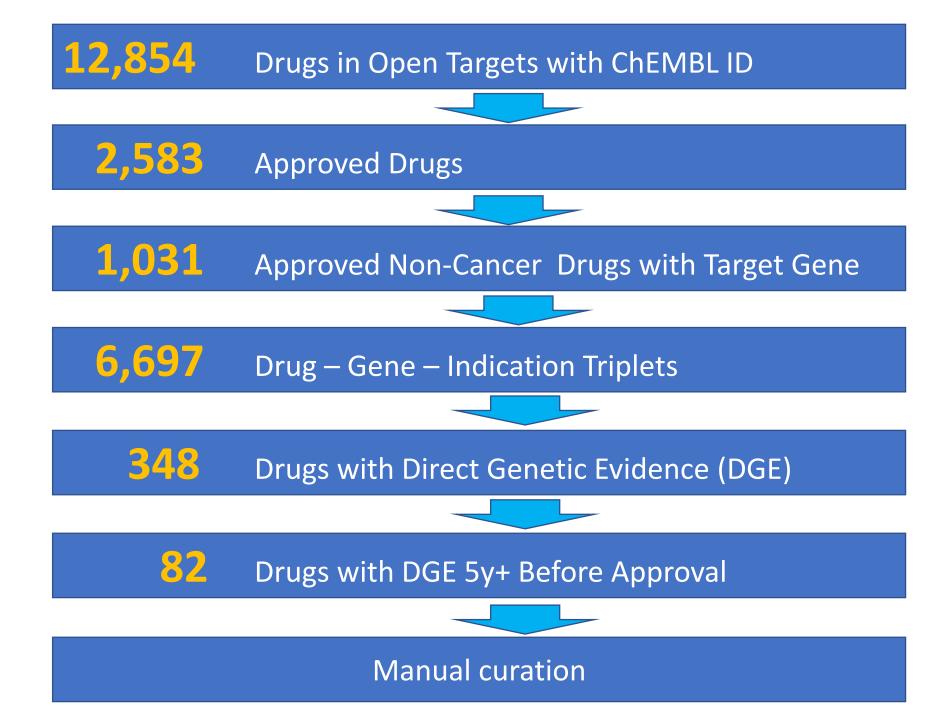
PCSK9: An Amazing Success Story

PCSK9: An Amazing Success Story


12 JUL. 2022 · BY DEREK LOWE · 3 MIN READ · COMMENTS

If you follow the progress of gene editing therapies in human disease, today is an interesting day. Verve Therapeutics has started a trial using CRISPR base editing technology to modify the PCSK9 gene in people with a disease called heterozygous familial hypercholesterolemia (HeFH).

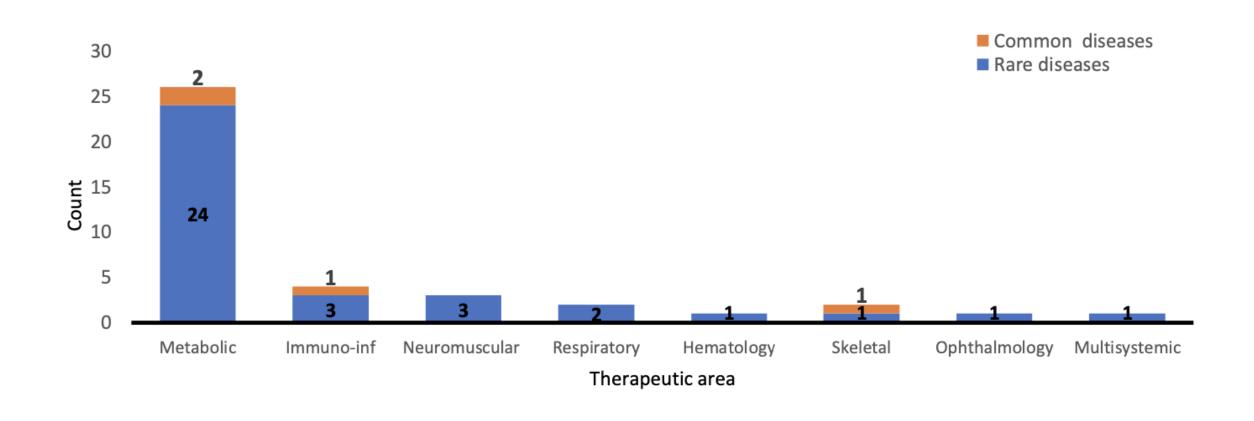
Genetically-Driven Drugs



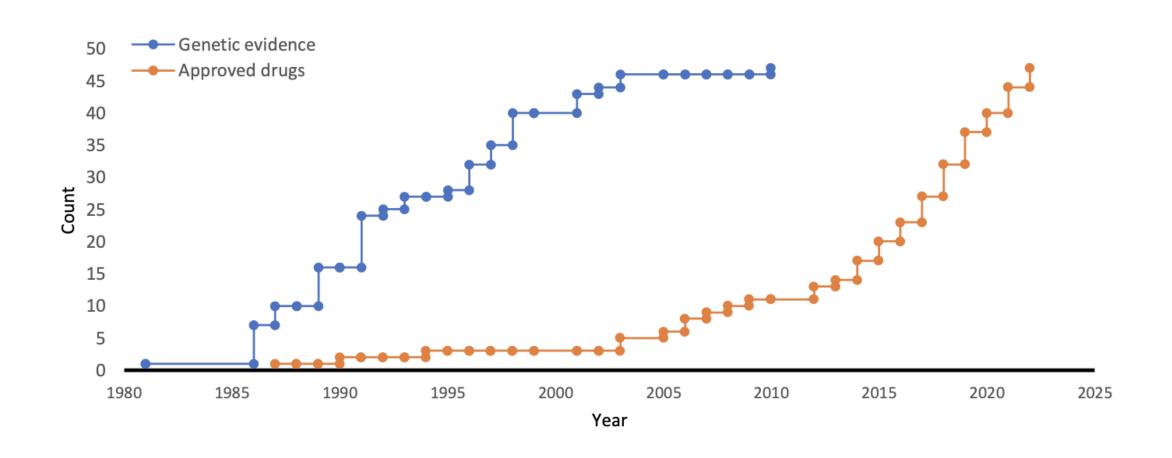
Review

From target discovery to clinical drug development with human genetics

Katerina Trajanoska¹, Claude Bhérer¹, Daniel Taliun¹, Sirui Zhou¹, J. Brent Richards²,³ & Vincent Mooser¹⊠


Methods

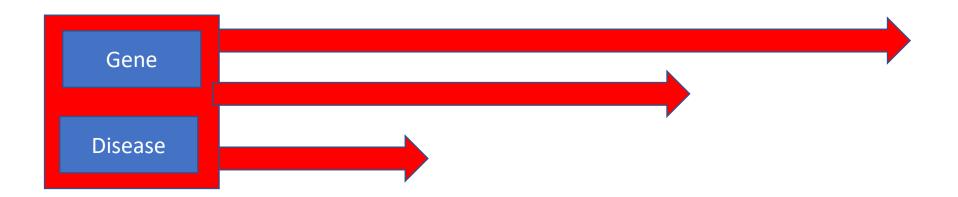
Genetically-Driven Approved Non-Cancer Drugs



Distribution of Genetically-Driven Drugs by Therapy Area and Prevalence of Disease Indication

Median 25-Years Separate Target Discovery from Regulatory Approval of Derived Drug

A Word of Wisdom



EGGGANAGGA ACELGGGTET ETGARGANAT ACTTCAGGAG TAGRAAGAGG AAGCTAGAGG BACTTACTAT ATCTCTAGAS CTCTACTAAA CTAAAACAAG TCTTGAATTG CATACCGCCA AGGGARACTO CARCOCCTOT ATTACTAGAT AGCTTCATC ARCAGCTCAA AACCGACAGA ANTITIGETTE GENTECCATE COCNTENEGE TEGENOCIEN CANTITIANO UNITERGUAAN TOGECCTTTA TERGAAGTAS CIGGITTITS CATTITETS! TITACCATAG GCCTLAGITE YCATTCTATT AGATTAAAAA AAAAGAATAC AATGGAAGCC AAGTGATTAA GCTTTCCTTA AACEGTATTA ACCTACAGAS AATGTECAGS GAAATGGTET ATTTCTTATT CTATTTTTBA TOTECATOCA CIFCCOTCAS CITIGOCOIS AAGOTATOTI TAAAGGTACO CIGINCAAGG TOTTOGATIA GGAGACATOF CACTGGGAGA TAACAGGGAA AGITATTATA TOTATGAACG GTOTTAAGAC TATAGTAATA TOTTCACTTS AAAAAGCCCT CTATTATICC TATCTCAGAS TRATESCACE TESETETACA ARCTASTET SCACASACAT TTARACANTE ATCCCCTARS AAAAACCAAA GTGAGGATCC CATCTGTTCC CAGTGAAATG ACGTAGAGGA AAGGACTAGG CARATGARTY TOCTTOTAL ADGAGEGAGA GCARACACTE TYTATTGTAC ARCTTGGGTG AACGGITACG TIGĞAGITAN AGGITAGGAN GAAMACINAN GGGIMAGAGC IGTIGITCIG TIGACAGAIT ATAACTCAGA EGICTTACIC AGAGCAINIG COTTCCCATT TICCCCATTA TATATTITAG GCCTTTTCCF TOGCAAGGAT GTTTGGTCAG GGGTTGGCAA AAATAATGCT CACCAGANAG TAGIAGANCE CICCAGGANE CARGICITES ICAGGAGICA GACTAGCTAG CCTGGCCTAA CTAGCCTACT GAGCTGAGAS ATGTCCAATT TCCCCCCAAT ACACTAACCA TTCCANTTGC TYANACAANT ATGTTCAGTT GTAACTATCA ATACCAGTAT ATAACAGTGT ACCENCACAS ATCCTCTAT CACCECCCTA CTTACCCACC CCTTTGCACT GAGACAGGTC

Leci n'est pas un médicament.

Coming up on the Horizon

Many genetically well-validated new targets

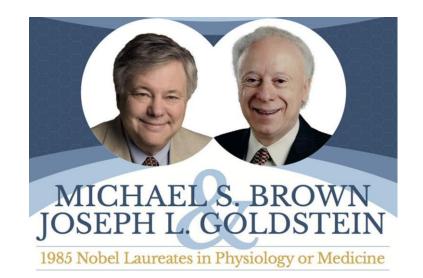
The Need to Invigorate Drug Development to:

- -Prioritize the portfolio
- Accelerate time to approval
- Improve early attrition
- Reduce trial size and costs

→ "Precision Clinical Development"

Genetically Enriched Proof-of-Concept Study

Disease Target ID Target Validation Tractable hit to candidate to FTIM to PoC


Target ID Target Validation Tractable hit to candidate to FTIM to PoC

Phases II-III

Lifecycle mgt

478

THE NEW ENGLAND JOURNAL OF MEDICINE

August 27, 1981

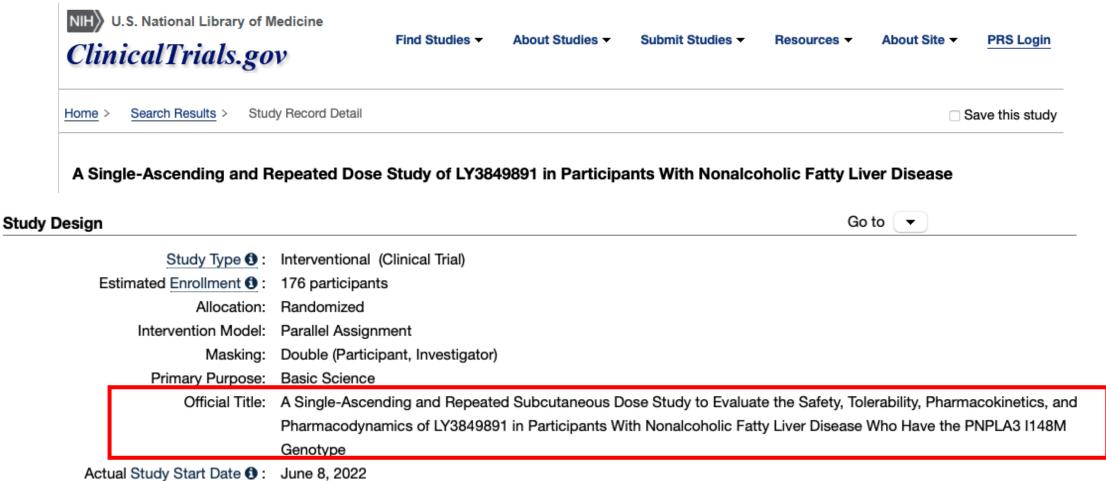
EFFECTS OF AN INHIBITOR OF 3-HYDROXY-3-METHYLGLUTARYL COENZYME A REDUCTASE ON SERUM LIPOPROTEINS AND UBIQUINONE-10 LEVELS IN PATIENTS WITH FAMILIAL HYPERCHOLESTEROLEMIA

Hiroshi Mabuchi, M.D., Toshihiro Haba, M.D., Ryzo Tatami, M.D., Susumu Miyamoto, M.D., Yasuyuki Sakai, M.D., Takanobu Wakasugi, M.D., Akira Watanabe, M.D., Junji Koizumi, M.D., and Ryoyu Takeda, M.D.

Abstract We studied the effects of ML-236B, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, on serum levels of lipoproteins and ubiquinone-10 in seven heterozygous patients with familial hypercholesterolemia. ML-236B

terol, and LDL triglyceride decreased significantly (P<0.01, P<0.02, P<0.001, and P<0.001, respectively). However, there were no significant changes in very-low-density-lipoprotein (VLDL) cholesterol and triglyceride or high-density-lipoprotein (HDL) choles-

First Description of *PNPLA3*Am J Hum Gen - Oct 2008


REPORT

Population-Based Genome-wide Association Studies Reveal Six Loci Influencing Plasma Levels of Liver Enzymes

Xin Yuan,¹ Dawn Waterworth,¹ John R.B. Perry,³ Noha Lim,¹ Kijoung Song,¹ John C. Chambers,⁴ Weihua Zhang,⁴ Peter Vollenweider,⁵ Heide Stirnadel,² Toby Johnson,^{6,7,8} Sven Bergmann,^{6,8} Noam D. Beckmann,⁶ Yun Li,¹² Luigi Ferrucci,⁹ David Melzer,³ Dena Hernandez,¹⁰ Andrew Singleton,¹⁰ James Scott,¹¹ Paul Elliott,⁴ Gerard Waeber,⁵ Lon Cardon,¹ Timothy M. Frayling,³ Jaspal S. Kooner,¹¹ and Vincent Mooser^{1,*}

Plasma liver-enzyme tests are widely used in the clinic for the diagnosis of liver diseases and for monitoring the response to drug treatment. There is considerable evidence that human genetic variation influences plasma levels of liver enzymes. However, such genetic variation has not been systematically assessed. In the present study, we performed a genome-wide association study of plasma liver-enzyme levels in three populations (total n = 7715) with replication in three additional cohorts (total n = 4704). We identified two loci influencing plasma levels of alanine-aminotransferase (ALT) (CPN1-ERLIN1-CHUK on chromosome 10 and PNPLA3-SAMM50 on chromosome 22), one locus influencing gamma-glutamyl transferase (GGT) levels (HNF1A on chromosome 12), and three loci for alkaline phosphatase (ALP) levels (ALPL on chromosome 1, GPLD1 on chromosome 6, and JMJD1C-REEP3 on chromosome 10). In addition, we

Precision Drug Development in Action: PoC for PNPLA3 Inhibitors on I14M Carriers

Estimated Primary Completion Date 1 : November 5, 2024
Estimated Study Completion Date 1 : November 5, 2024

Requirements for Precision Drug Development

- → LARGE, DIVERSE, DISEASE-based cohorts
- → Patients deeply phenotyped and properly consented for genomic analyses and recall-bygenotype studies
- → Interoperable for (international) collaborations
- → Ethically and socially responsible

Paving the Way to Precision Drug Development

The European Journal of Medical Sciences

Review article: Current opinion | Published 4 December 2014, doi:10.4414/smw.2014.14033

Cite this as: Swiss Med Wkly. 2014;144:w14033

The Lausanne Institutional Biobank: A new resource to catalyse research in personalised medicine and pharmaceutical sciences

Vincent Moosera, Christine Curratb

Paving the Way to Precision Drug Development

Original article | Published 20 October 2017 | doi:10.4414/smw.2017.14528

Cite this as: Swiss Med Wkly. 2017;147:w14528

High participation rate among 25 721 patients with broad age range in a hospital-based research project involving whole-genome sequencing – the Lausanne Institutional Biobank

Bochud Murielle^a, Currat Christine^b, Chapatte Laurence^b, Roth Cindy^c, Mooser Vincent^{cd}

- ^a Institute for Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
- b Swiss Biobanking Platform, Lausanne, Switzerland
- ^c Valuation of Clinical Data and Biological Samples Unit, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
- ^d Service of Clinical Chemistry, Centre Hospitalier Universitaire Vaudois, Lausanne Switzerland

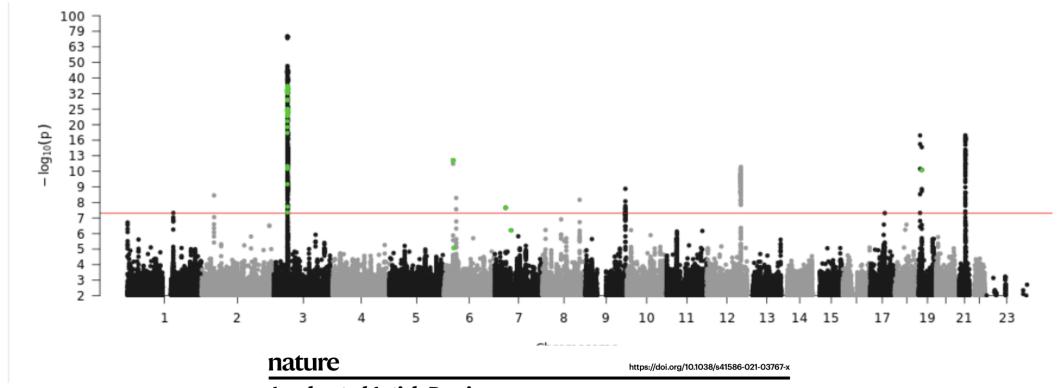
From CHUV to McGill – August 2019

Mars 2020

- 19 mars 2020 : Mandat du FRQ et de Génome Québec
- 21 mars 2020 :
 Mise en place de la <u>Task</u> Force (Comité directeur)
- 31 mars 2020 : Approbation par le Comité d'éthique du CHUM

Avril 2020

 1^{er} avril 2020: Recrutement du 1^{er} patient

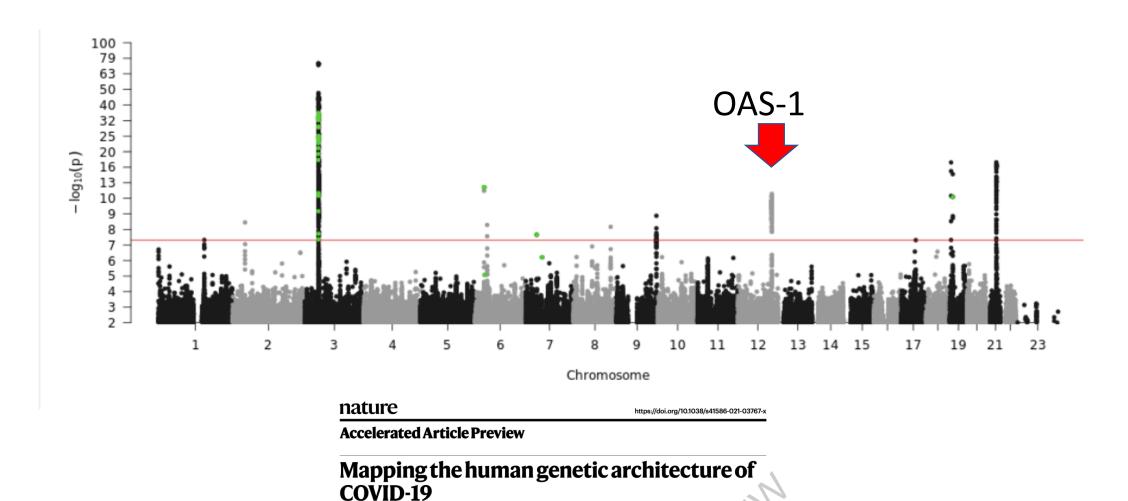

Juin 2020

- 6 juin 2020 : Recrutement du 1000ème patient
- 10 juin 2020 : Contrat avec l'Agence de Santé Publique du Canada
- 15 juin 2020 : Approbation des analyses de base par le Comité de Gouvernance

Juillet 2020

 17 juillet 2020 : Libération des premières données

GWAS – COVID-19 Host Genome Initiative



Accelerated Article Preview

Mapping the human genetic architecture of COVID-19

Received: 2 March 2021 COVID-19 Host Genetics Initiative
Accepted: 23 June 2021

GWAS – COVID-19 Host Genome Initiative

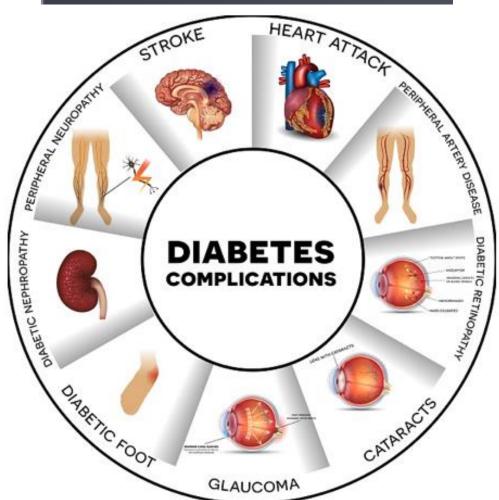
Received: 2 March 2021 COVID-19 Host Genetics Initiative Accepted: 23 June 2021

https://doi.org/10.1038/s41591-021-01281-1

A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity

Sirui Zhou^{1,2,23}, Guillaume Butler-Laporte^{1,2,23}, Tomoko Nakanishi^{1,3,4,5,23}, David R. Morrison¹, Jonathan Afilalo^{1,2,6}, Marc Afilalo^{1,7}, Laetitia Laurent¹, Maik Pietzner⁸, Nicola Kerrison⁸, Kaiqiong Zhao^{1,2}, Elsa Brunet-Ratnasingham^{9,10}, Danielle Henry¹, Nofar Kimchi¹, Zaman Afrasiabi¹, Nardin Rezk¹, Meriem Bouab¹, Louis Petitjean¹, Charlotte Guzman¹, Xiaoqing Xue¹, Chris Tselios¹, Branka Vulesevic¹, Olumide Adeleye¹, Tala Abdullah¹, Noor Almamlouk¹, Yiheng Chen^{1,3}, Michaël Chassé⁹, Madeleine Durand⁹, Clare Paterson¹¹, Johan Normark¹², Robert Frithiof¹³, Miklós Lipcsey^{13,14}, Michael Hultström^{13,15}, Celia M. T. Greenwood^{1,2,16}, Hugo Zeberg¹⁷, Claudia Langenberg^{8,18}, Elin Thysell¹⁹, Michael Pollak^{1,20}, Vincent Mooser³, Vincenzo Forgetta¹, Daniel E. Kaufmann^{9,21} and J. Brent Richards¹

Paving the Way to Precision Drug Development Recycling the Plans at McGill



- Mission: Improve care of Jewish General Hospital (JGH) patients using genomic medicine
- PI: Brent Richards, Co-PI: Vincent Mooser
- Partners: JGH CERC Industry (TBD)
- Funding: JGH Foundation, CERC, industry (TBD)
- Recruitment started: Aug 2023
- Goal: 3500+ patients / yr

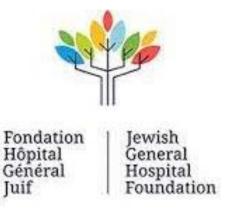
Summary

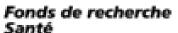
- Genetics has delivered new markers of drug safety and new drugs !!!
- Much more to come on the horizon
- Need to demonstrate clinical utility, i.e. from observation studies to intervention trials
- Infrastructures under construction at McGill for "precision clinical development" of new therapeutics
- Active collaborations with UniBE to foster

Collaborations with UniBE on Genomic Medicine

- Development of new, cost-effective, technologies to sequence whole genomes (in press)
- Genomic architecture of Peripheral Artery Disease (ms in preparation)
- Demonstration of clinical utility of PRS in dyslipidemic patients (Drs Elisavet Moutzouri – Nicolas Rodondi – FNRS funded)
- Under planning: McGill as genomic medicine arm for Digital Twin in Diabetes Project (Jose Garcia, Chistoph Stettler, DCR)

Acknowledgments




Claude Bhérer PhD
Daniel Taliun PhD
Sirui Zhou PhD
Raquel Cuella Martin PhD

Kate Trajanoska MD PhD Benoît Delabays MD

Brent Richards MD PhD Dave Morrison PhD

And many others

50

Agence de la santé publique du Canada

